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Abstract

Background: Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for
its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants
during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not
sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to
assess the degree of transmission in these settings. We have used whole genome analysis to investigate M.
tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years.

Methods and Findings: We used high throughput genome sequencing technology to investigate small
polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB
patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69%
of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from
individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters
comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for
resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug
susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from
another patient in the cohort.

Conclusions: Whole genome sequence analysis identified MDR-TB strains that were shared by more than one
patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the
importance of early detection and need for infection control. Consideration should be given to rapid testing for drug
resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to
avoid onward transmission.
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Introduction

Tuberculosis (TB) caused by Mpycobacterium tuberculosis
(Mtb) is a major global health problem, with an estimated 8.7
million new cases and 1.4 million deaths each year [1]. The
World Health Organisation (WHO) and Stop TB Partnership
have set the ambitious target of global "elimination" of TB as a
public health problem by 2050 [2] but the emergence of strains
that are resistant to anti-tuberculosis drugs threatens to disrupt
efforts to control the disease [3]. Multidrug-resistant TB (MDR-
TB), which accounts for in excess of 150,000 deaths per
annum, is resistance to at least isoniazid and rifampicin, the
two key first-line anti-tuberculosis drugs. WHO have recently
reported the highest global levels of drug resistance ever
documented with 3.4% of new TB patients and 19.8% of
previously treated cases having MDR-TB [4]. Patients with
MDR-TB require prolonged treatment of at least 18 months
with a cocktail of expensive drugs of heightened toxicity. If not
provided with appropriate therapy patients may remain
infectious and a source of onward transmission. Standard first-
line treatment regimens include isoniazid, rifampicin,
ethambutol and pyrazinamide, empirically supplemented in
some cases with streptomycin when drug resistance is
suspected [5]. Second line TB drugs include the
fluoroquinolones, injectable aminoglycosides and oral
bacteriostatic agents such as cycloserine or ethionamide [6].
The primary mechanism for acquiring resistance in Mtb is the
accumulation of point mutations (SNPs) in genes coding for
drug targets or converting enzymes and drug resistant disease
arises through selection of mutants during inadequate
treatment [7]. Multidrug resistant disease in previously treated
patients is generally attributed to sequential selection of drug
resistant mutants during inadequate therapy, whereas for new
patients transmission of a resistant strain is assumed [8,9].
However, recent reports of outbreaks of MDR-TB in TB and
HIV treatment clinics suggest that transmission may be a
greater factor in the global emergence of drug resistant disease
than previously assumed [10].

The Mtb genome is characterised by low sequence diversity
[11,12] and molecular typing techniques such as spoligotyping,
variable number tandem repeats (MIRU-VNTR) and 1S6110
restriction fragment length polymorphism (RFLP) have been
used for epidemiological and evolutionary applications [13] but
recent investigations of clinical isolates suggest strains with
identical DNA fingerprinting patterns may harbour substantial
genomic diversity [14-17]. Second generation high throughput
sequencing technologies (e.g. lllumina HiSeq2000 [18]) mean it
is now possible to perform whole genome sequencing of Mtb
on a large scale [19,20]. In this study we applied whole
genome sequencing to provide a better understanding of the
emergence and acquisition of drug resistance in patients
attending the Mulago Hospital National Tuberculosis and
Leprosy Program (NTLP) treatment clinic in Kampala, Uganda.
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Methods

Ethics Statement

The AIDS Research Sub-Committee of the Uganda National
Council of Science and Technology and the Institutional
Review Boards at the University of Medicine and Dentistry of
New Jersey and the London School of Hygiene & Tropical
Medicine approved the study. All patients provided written
consent.

Study population and patients

Uganda is one of 22 countries recognized as having a high
burden of TB with an estimated 67,000 incident cases during
2011 [1]. MDR-TB is estimated at 1.4% in new cases (having
received less than four weeks of therapy) and 12% in
previously treated cases [1]. From July 2003 to April 2007, we
conducted a cohort study of 439 previously treated pulmonary
TB patients attending the NTLP treatment centre at Mulago
Hospital in Kampala, an 85-bed inpatient facility that serves as
the national referral centre and the largest TB treatment clinic
in Kampala. The study was undertaken prior to the introduction
of second line treatment for MDR-TB in Uganda. Data obtained
has been presented elsewhere [5,21]. MDR-TB was found in
12.7% of retreatment cases and was the only common risk
factor for death during follow-up for both HIV-infected and HIV
uninfected patients. No association was observed between HIV
positivity and MDR-TB [21]. During the study period fifty four
patients had MDR-TB on enrolment and a further 5 were found
to have MDR-TB following treatment. Mtb isolates obtained
during the study were archived for future investigation. Not all
isolates obtained were available for the study due to a lack of
storage capacity in the isolating laboratory and samples were
not available for 18 (30%) of patients identified as having MDR-
TB during the study period.

Sample collection and drug susceptibility testing

We performed whole genome sequencing of a convenience
sample of Mtb isolates (n=51) from 41 patients, including
samples collected longitudinally from five patients (n=15)
(Table 1). The patients had previously received treatment for
TB and were presenting with a recurrence either as relapsed
cases, treatment failures, or after defaulting treatment. On
attending the Mulago Clinic all patients had received the
standard WHO-recommended category Il retreatment regimen
composed of 2 months of streptomycin (S), rifampicin (R),
isoniazid (H), ethambutol (E), and pyrazinamide (Z); 1 month of
R,H,E and Z; and 5 months of R,H and E (2SRHEZ/1RHEZ/
5RHE) [6]. Full treatment records for previous episodes of
tuberculosis self-reported by patients were not available.
Patients were selected because they were found by phenotypic
susceptibility testing to have disease resistant to at least
isoniazid and rifampicin, either at enrolment or following
treatment.

Mtb isolates obtained by liquid culture were subjected to
drug-susceptibility tests for streptomycin, isoniazid, rifampicin,
pyrazinamide and ofloxacin using BACTEC 460 or MGIT 960
testing systems [22] at critical concentrations of 1, 0.1, 1.0, 100
pug/mL and 2 mg/mL respectively. Ethambutol was tested at 2.5
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Table 1. Data for 41 tuberculosis patients who contributed samples.

Patient No. samples Sample collection dates Age Gender Paris code HIV *Previous TB episodes
A70011 6 Jul 03-Aug 04 36 F 66 + 1
A70012 1 May 05 27 F 50 - 2
A70067 2 Sep 03-Apr 04 30 M 235 +
A70086 1 Oct 03 na na na na na
A70088 1 Oct 05 48 F 50 - 3
A70136 3 Nov 03-Dec 04 32 M 87 - 3
A70144 2 Nov 03-Apr 04 24 F 598 + 1
A70170 1 Jan 04 39 F na + 2
A70196 1 Feb-04 24 F 198 - 4
A70250 1 Apr 04 29 F 80 + 2
A70260 1 Apr 04 19 F 66 + 1
A70280 1 May 04 33 F 80 + 1
A70329 1 Jul 04 26 F 584 - 1
A70376 1 Oct 05 27 M 72 - 1
A70387 1 Sept 04 48 F 404 - 1
A70416 1 Nov 04 na na na na na
A70428 1 Nov 04 45 M 137 - 4
A70441 1 Dec 04 43 F 36 - 1
A70448 1 Dec 04 28 M na - 1
A70451 1 May 05 25 M 45 - 1
A70458 1 Jan 05 42 M 389 + 5
A70480 1 Feb 05 50 M 580 - 1
A70490 1 Mar 05 30 F 24 + 5
A70501 1 Apr 05 49 M 580 - 3
A70547 1 Feb 06 20 F 72 - 3
A70555 1 Jul 05 30 F 273 - 3
A70582 1 Aug 05 23 M 30 - 1
A70596 1 Sep 05 20 M - 3
A70620 1 Nov 05 42 M - 3
A70645 1 Jan 05 30 M 1 - 2
A70655 1 Jan 06 24 F 66 - 2
A70657 1 Mar 06 42 M na - 2
A70659 1 Mar 06 29 M 43 - 1
A70661 1 Mar 06 47 M na - 6
A70730 1 Aug 06 28 F 30 - 2
A70757 1 Sept 06 27 F 568 + 4
A70762 1 Sep-06 29 F 132 + 1
A70763 2 Sep 06-Apr 07 29 F 52 - 2
A70769 1 Oct 06 30 F na - 2
A70780 1 Oct 06 26 M 76 na 2
A70785 1 Nov 06 30 F 397 - 2

* Number of TB episodes prior to enrolling in the study, as self reported by the patient. na = not available

Parish code=reported home location
doi: 10.1371/journal.pone.0083012.t001

ug/ml in BACTEC 460 and 5 ug/ml in the MGIT 960. Isolates
that were resistant to isoniazid and rifampicin were further
tested for resistance to second-line drugs. Capreomycin,
kanamycin, ethionamide, and para-aminosalicylic acid were
tested using the Middlebrook 7H10 agar proportion method at
critical concentrations of 10, 5, 5, and 2 mg/mL, respectively.
After identification Mtb isolates were subcultured and aliquots
stored frozen at minus 80°C prior to shipping to the LSHTM
where they were subcultured on Lowenstein Jensen slopes.
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DNA for sequencing was extracted using the Bilthoven RFLP
protocol[23]. Mtb grown on LJ slopes was treated with
lysozyme, sodium dodecyl sulphate, proteinase K, N-cetyl-
N,N,N-trimethyl ammonium bromide (CTAB) and chloroform-
isoamyl alcohol prior to precipitation with isopropanol.
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Sequencing and genetic variant analysis

Samples were subjected to whole genome sequencing and
spoligotyping, a widely used Mtb genotyping tool based on the
presence or absence of short spacer sequences in a region of
direct repeats within the Mtb genome [24,25]. DNA for
sequencing was extracted using a standardised protocol [23].
Spoligotypes were inferred in silico using the SpolPred
software [26] and determined by the Kamerbeek methodology
[24]. Spoligotypes were assigned following the International
Data Base (SpolDB4) recommendations [27]. All samples
(n=51) underwent whole genome sequencing with 76-base
paired end reads, using lllumina HiSeq2000 technology [18].
The data processing pipeline used has been described
previously [28]. The raw sequence data were mapped uniquely
to a corrected H37Rv reference genome [29,30] using bwa
[31]. The mappings allowed SNPs and small indels to be called
using SAMtools/BCFtools [32] Larger indels were identified
using a consensus from paired end mapping distance or split
read approaches (Breakdancer [33], CREST [34], Pindel [35]
and Delly [36]), followed by an assembly-validated strategy
using Velvet software [37]. Only those variants of high quality
(at least Q30, equating to 1 error per 1000) and supported by
bi-directional reads were retained. In addition, we excluded
polymorphisms with two or more missing genotypes as well all
variants in highly variable gene families (e.g. PPE/PE loci) and
non-unique regions established by assessing the uniqueness
of 54-mers across the genome. Variation density maps were
generated using Circos software (www.circos.com).

First we catalogued the polymorphisms and identified
variants including single nucleotide polymorphisms (SNPs),
insertions and deletions (indels) and large deletions. Second,
using this genomic variation we assessed the degree of
population structure. Third, we focused on identifying the
incremental variant changes across clustered strains and in
drug resistance profiles within patients over time. Clusters of
samples with less than 50 SNPs variation were examined.
Finally we assessed degree of similarity between isolates to
infer possible transmission of drug resistant disease. For some
analysis we investigated known drug candidate regions (Table
2).

A clustering dendrogram was constructed using R statistical
software, using SNP and indel data [38]. To provide further
phylogenetic analysis a best-scoring maximum likelihood tree
was computed with RAXML (version 7.4.2) [39] using SNPdata.

Results

Genomic variation

A total of 51 isolates collected from 41 patients were
investigated (Table 1). All patients had been diagnosed with
MDR-TB either at enrolment or following treatment,
representing 69% of MDR-TB cases and 9.3% of patients
enrolled in the cohort. Half of the patients came from Kampala
District (50%), and the majority of the remainder from
surrounding districts. Some patients reported living in the same
parish (Table 2), but no two patients reported living in the same
village (a collection of 50-70 households). Of the 38 patients for
whom HIV status was known 11 (29%) were seropositive. In
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Table 2. Candidate drug resistance and putative efflux
pump genes investigated.

Function Genes

Drug resistance
Streptomycin rpsL, rrs, gidB

katG, furA, ahpC, inhA, kasA, ndh, iniA, iniB, iniC, embB, fbpC,

Isoniazid fabG1, nat, fadE24, efpA, ndh, Rv1592c, Rv1772, Rv2242,
fabD, accD6, proA, efpA, fadE24
Rifampicin poA, rpoB, rpoC, rpoD, embB
Rv3126, manB, rmID emb, embA, embB, embC, iniB, iniA, iniC,
Ethambutol
embR, Rv3124
Pyrazinamide pncA
Ofloxacin gyrA, gyrB, iniA, iniB, iniC, embR
Ethionamide etaA
Cycloserine iniC
Rv0194, emrB, Rv1250, Rv1272c, Rv1273c, Rv1634, stp, efpA,
Efflux pumps

bacA, mmr, drrA, drrB, drrC
Taken from http://www.tbdreamdb.com/
doi: 10.1371/journal.pone.0083012.t002

summary, sequencing yielded a median of 20.6 million 76
base-pair (bp) reads per sample. The reads mapped uniquely
to more than 95% of the genome with in excess of 100-fold
coverage (median 314) and 96% of the genome was covered
at least 10-fold. Of 8269 putative SNPs 6857 (84.6%) were
high quality and included in the analysis. Of these high quality
SNPs, the majority (3667, 53.4%) were observed in single
isolates. The majority were located in coding regions (median
71.5%, range 69.3 - 75.6%), and of those the majority lead to
non-synonymous changes in amino acids (median 58.0%,
range 54.5 - 60.6%). (See Table S1 for details) Identical non-
synonymous SNP profiles were observed with pairs of samples
isolated at the same point in time (n=2) and in general, low
variation was seen in longitudinal samples from the same
patient (Table 3).There was representation within drug
resistance (DR) candidates (156) and putative efflux pump
genes (41) (See Tables S2 and S3 for details). There was little
evidence of mixed infection or cross contamination of samples
(21 heterozygous genotypes, 1 per ~17000 SNP positions).
However, it should be noted that isolates were sub-cultured at
least twice prior to DNA extraction when selection of a
dominant population may have occurred. The SNP density
(average 2.4 per kb) tended to be greater in DR candidate
genes (average 4.1 per kb), with two genes pncA and gid
having over 20 SNP per kb (Figure S1 and Table S4).

We observed 737 indels in unique and non-highly variable
genetic regions, including 14 in DR genes. Of the 92 large
deletions identified in robust regions of the genome 31 (33.7%)
were detected in single isolates. The median number of
deletions per isolate was 22 (range 13 - 27). Deletions
considered informative are presented in Figure 1 and the full
list is provided in Figure S2. All raw data can be downloaded
(short read archive, accession number ERP000520) and a full
list of wvariants can be found on the http:/
pathogenseq.Ishtm.ac.uk/polytb website.
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Table 3. Incremental SNPs in longitudinal samples from the same patient and clustered strains.

Sample group Patient Date SIT Spoligo family Drug INH Drug RMP Compared to SNPs
All DR

1 A70763-1 Sep-06 302 X1 R S H37Rv 689 (336) 10 (7)
A70763-2 Apr-07 1721 X1 R R A70763-1 15 (11) 2(2)

2 A70011-1 Jul-03 0 o S S H37Rv 570 (306) 7(6)
A70011-2 Jul-03 0 o - - A70011-1 0(0) 0(0)
A70011-3 Oct-03 0 o - - A70011-1 2(2) 0(0)
A70011-4 Oct-03 0 (0] - - A70011-1 2 (0) 0 (0)
A70011-5 Jul-04 4 LAM3/S R R H37Rv 527 (334) 13 (11)
A70011-6 Aug-04 4 LAM3/S R R A70011-5 2(2) 1(1)

3 A70067-1 Sep-03 288 CAS2 S S H37Rv 1060 (539) 15 (9)
A70067-2 Apr-04 2867 T2 R R H37Rv 475 (246) 11(9)

4 A70136-1 Nov-03 26 CAS1_DELHI S S H37Rv 1049 (544) 19 (14)
A70136-2 Aug-04 26 CAS1_DELHI R S A70136-1 2(2) 1(1)
A70136-3 Dec-04 26 CAS1_DELHI R R A70136-1 2(2) 1(1)

5 A70144-1 Nov-03 288 CAS2 R R H37Rv 1037 (533) 18 (13)
A70144-2 Apr-04 288 CAS2 R R A70144-1 4 (3) 1(1)

6 A70086 Oct-03 2356 X1 R R H37Rv 988 (685) 12 (10)
A70458 Jan-05 2356 X1 R R A70086 20 (15) 8(8)

7 A70441 Dec-04 59 LAM11_ZWE R R H37Rv 893 (650) 13 (10)
A70547 Feb-06 59 LAM11_ZWE R R A70411 14 (13) 5(5)
A70659 Mar-06 59 LAM11_ZWE R R A70411 5 (5) 2(2)
A70582 Aug-06 59 LAM11_ZWE R R A70411 5 (5) 2(2)

8 AT70260 Apr-04 4 LAM3/S R R H37Rv 824 (599) 12 (10)
A70785 Nov-06 125 LAM3 R R A70260 6 (6) 3(3)
A70011-5 Jul-04 4 LAM 3/S R R A70260 4 (4) 2(2)
A70011-6 Aug-04 4 LAM 3/S R R A70269 4 (4) 2(2)

9 A70329 Jul-04 52 T2 R R H37Rv 793 (572) 14 (10)
A70376 Oct-05 52 T2 R R A70329 21 (13) 5(5)
AT70730 Aug-06 52 T2 R R A70329 20 (12) 5(5)

10 A70448 Dec-04 - - R R H37RV 818 (585) 11(9)
A70762 Sep-06 - - R R A70448 32 (17) 9(8)

11 A70144-1 Nov-03 288 CAS2 R R H37Rv 1037 (533) 18 (13)
A70144-2 Apr-04 288 CAS2 R R A70144-1 4 (3) 1(1)
AT70769 Oct-06 288 CAS2 R R A70144-1 21 (18) 5(5)
AT70780 Oct-06 288 CAS2 R R A70144-1 15 (12) 5(5)

Cluster = isolates < 50 SNP variation; Drugs: INH = Isoniazid , RIF= Rifampicin, R = resistant, S = susceptible; DR = drug resistant candidates (see Table S3 for list) SNP ( )

= non-synonymous changes, BOLD = high genome similarity and shared SNPs for MDR

doi: 10.1371/journal.pone.0083012.t003

Population structure

The population structure of isolates based on SNP
information separated samples into previously described
lineages (Figure 1) [40]. Inclusion of larger variants did not
change the clustering of samples which clustered to a first
approximation by Spoligotype International Type (SIT), with
EAl, LAM/T and Beijing/CAS ancestry separated [41]. Some
divergance within isolates assigned by spoligotype to the T
family was observed (samples A70620 and A70416). While
over three hundred SNPs were informative for the CAS family
(CAS1_DELHI, CAS2, CAS1_KILI) no informative SNP
markers for the entire LAM family were identified, but there
were strain-specific polymorphisms for LAM3&S convergent
and LAM11_ZWE. Analysis of large deletions revealed putative

PLOS ONE | www.plosone.org

markers for genotype families not previously reported, including
SIT 59 and the larger LAM11_ZWE spoligotype family.

With two exceptions, little variation was seen in isolates
taken from the same patient over time (2-15 SNPs). For two
patients (A70011 and A70067) longditudinal sampling indicated
subsequent infection with a different strain of Mtb. (Table 3) In
both cases the initial strain was drug sensitive and the second
strain was MDR. A total of 37 (90%) patients had TB
spoligotype patterns identical to those from one or more other
patients. Of these 20 (54%) were found to be unique, having an
excess of 50 SNPs variation and these stains were not
implicated in transmission to other patients in the study. Six
clusters (17 patients) with variation of less than 50 SNPs and
the five sets of londitudinal samples were examined to
ascertain the relatedness of the strains. Results are
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Figure 1.

Population structure using SNP and small indel data with tabulated larger deletions.

Clustering dendrogram

constructed using R statistical software, based on a pair-wise identity. On average there are 860 SNP alleles and 64 small indels
differences between any two isolates. Large deletions were identified using a consensus from paired end mapping distance or split
read approaches followed by an assembly-validated strategy using Velvet software[37]. Only deletions considered informative are
shown. SIT numbers were assigned in accordance in the international database SITVITWEB[41].

doi: 10.1371/journal.pone.0083012.g001

summarised in Table 3 and show a preponderance of SNPs in
genes associated with drug resistance. In samples collected
from the same patient over time there was a trend to increased
numbers of SNPs. For clustered isolates orginating from
different patients no correration was observed between
incremental SNP and the date of sample collection
(Spearman’s correlation [42]).
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Analysis of SNP differences found two paired samples from
different patients (Cluster 6 and 10) with differing mutations
predictive of MDR in rpoB and katG (resistance to rifampicin
and isoniazid respectively), suggesting resistance had
emerged independently in these strains and excluding the
possibility of transmission of MDR-TB (Table S5). The
phylogeny of the remaining four clusters is presented in Figure
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Figure 2. Radial phylogram constructed using SNPs and showing clustered samples. The best-scoring maximum likelihood
phylogenetic tree was constructed using the set of 6,847 SNP sites. Support values computed from 100 bootstrap replicates provide
assessment of confidence for each clade and are shown at the nodes of the tree. SNP variations within the clusters are summarised

in Table 3.
doi: 10.1371/journal.pone.0083012.g002

2. All isolates shared polymorphisms in katG predictive of
resistance to isoniazid (S315T) but there was variation in rpoB
predictive of resistance to rifampicin. Review of base calls did
not reveal evidence of subpopulations in these samples. In
cluster 7 whereas the four isolates shared polymorphisms in
katG sample A700582 had discordant polymorphisms in rpoB
suggesting independant emergence of MDR within this cluster.
In cluster 9 there was strong evidence of transmission of MDR-
TB, where two isolates (A70376 and A70730) differed by a
single SNP and shared polymorphisms in rpoB and katG. The
third isolate (A70329) had differing polymorphism in rpoB and
thus was not part of a common MDR transmission chain.
Cluster 11 also provided evidence suggestive of transmision of
MDR, with 4 isolates from 3 patients exhibiting identical
polymorphims at two loci for both rpoB and katG and a single
pncA loci. Evidence of the continued acquisiton of
polymorphisms was evident as the 2004 sample from patient
A70144 exhibited a different mutation (S450Stop) from the two
samples collected in 2006, (A70769 and A70780) which shared
an additional rpoB mutation S450L.

Cluster 8 included four isolates from three patients assigned
SIT 4 (3) and SIT125 (1) by spoligotyping. The spoligotype
pattern for sample A70785 lacked spacer 39, an observation
seen both in silico analysis using SpolPred software and by the

PLOS ONE | www.plosone.org

Kamerbeek methodology. Nineteen large deletions were
common to all four isolates. Two additional deletions were
observed in sample A70260 (Figure S2). SNPs in genes
associated with MDR-TB (rpoB and katG) were common
across the 4 isolates and it is probable that these strains
resulted from a common source of MDR-TB.

Opportunities for transmission between clustered patients
where transmission is suspected are not obvious as they
resided in different neigbourhoods within the Kampala district.
Examination of admission and discharge dates for patients
admitted to the wards during the period of study suggest that
clustered patients were not hospitalised concurrently (Table
S6) Examination of cases histories and previous episodes of
TB revealed concurrent episodes of disease raising the
possibility of noscomial transmission during attendance at
treatment clinics (Table 4 and Figure 3).

Drug resistance

Of the 51 isolates, 47 had phenotypic data on susceptibility
to first line anti-tuberculosis drugs and 31 to second line drugs
(Table 5). Isolates collected from three patients were reported
phenotypically sensitive to all drugs tested and the remainder
were resistant to at least two drugs. Forty two isolates were
reported as MDR-TB, and 2 were resistant to isoniazid but not
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Table 4. Mutations in rpoB in patient isolates and dates of TB episodes.

Cluster No Patient rpoB codon (mutation) Sample date  Enrollment Symptoms weeks Previous TB Treatment end/death
7 A70441 450 (TCG/TTG) Dec-04 Dec-04 4 Jan-04
7 A70547 450 (TCG/TTG) Feb-06 Jun-05 8 Jun-00 Apr 06
7 A70659 450 (TCG/TTG) March-06 Feb-06 20 Oct-05
7 A70582 445 (CAC/CGC) Aug-06 Aug-05 3 Aug-04
8 A70260 450 (TCGI/TTG) Apr-04 Apr-04 8 Aug-03 Jun-04
8 A70785 450 (TCGI/TTG) Nov-06 Nov-06 1 Oct-03
8 A70011 450 (TCG/TTG) Jul-04 Jul-03 20 Jul-03 Apr-05
9 A70329 445 (CAC/CGC) Jul-04 Jul-04 24 Jul-02
9 A70376 450 (TCGI/TTG) Oct-05 Sep 04 2 Mar-04 Apr-05
9 A70730 450 (TCG/TTG) Aug-06 Aug 06 8 Jul-04 Mar 07
11 A70144 450 (TCGI/TAG) Nov-03 Nov 03 4 Apr 03

876 (GGT/A);1075 (GCTI/C)
11 A70769 450 (TCGI/TTG) Apr-04 Oct 06 208 Aug-03/Apr-05

876 (GGT/A);1075 (GCT/C)
11 A70780 450 (TCGI/TTG) Oct-06 Oct 06 32 Feb-03/Sept-05

876 (GGT/A); 1075 (GCT/C)
Previous TB = date of previous TB diagnosis as self-reported by patient. Enroliment = Date of enrollment in study at Mulago TB Clinic. Symptoms = duration of symptoms

prior to most recent diagnosis as self-reported by patient. BOLD = samples with high genome similarity and shared SNPs for MDR
doi: 10.1371/journal.pone.0083012.t004

Patient
A70441
A70547
A70659
A70582

A70260
A70785
A70011

A70329 D
A70376
A70730

o

A70144 D
A70769
A70780 D

Bimonthly period 4 56 1 2 3 45 6 1 2 3 4546 12 3 456 12 3 435 6
Year 2002 2003 2004 2005 2006

Figure 3. Episodes of tuberculosis for clustered patients. D = Date of diagnosis of initial TB episode as self reported by
patient; S = date collection of sequenced sample; Black shading = Microbiologically proven TB; Grey shading = Duration of
symptoms prior to diagnosis for episode when the sequenced sample was collected, as reported by patient; Bold = strain implicated
in transmission of MDR.

doi: 10.1371/journal.pone.0083012.g003

rifampicin In MDR-TB isolates the most common SNPs were respectively (rpoB E. coli codon numbering). (Table S2 for
katG S315T (28/42, 66.7%) and rpoB S531L (21/40, 52.5%), details). Mutations not previously associated with drug
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resistance were identified in DR genes of strains found
resistant. SNPs were observed in genes such as rpoC,
suspected of compensatory properties [43-45]. In addition to
the SNPs, 11 indels were observed in DR genes. Deletion
analysis revealed five patient isolates lacked the gene ethA/
etaA (Rv3854c) required for activation of ethionamide [46,47].
Similarly katG, required for catalase-peroxidase activation of
isoniazid was deleted in two strains. Neither of the isolates
deletions were implicated in transmission, possibly reflecting
reduced fitness of these strains [48,49]. It should be noted that
polymorphisms in DR genes were not observed in all samples
found resistant by phenotypic testing. Three isoniazid resistant
isolates contained no detectable mutation in the isoniazid
candidate genes, two isolates had the R463L mutation in katG,
which is not associated with isoniazid resistance [50]. Three
isolates resistant to rifampicin by phenotypic methods (liquid
culture) contained no detectable mutation in rpoB.

Discussion

Our study has adopted a whole genome sequencing
approach to investigate Mtb isolated from treatment
experienced TB cases attending a clinic in Uganda and
provides important insights into changes in within patient
samples over time. Spoligotyping was shown to be a poor
indicator for transmission of MDR-TB and we demonstrate the
known advantage of SNPs as robust markers for population
genetic analysis [17]. Samples were known to include strains
resistant to multiple drugs and to encompass those strains with
multiple polymorphisms in genes related to pharmacological
action a high threshold (< 50 SNPs variation) was used to
define clusters for the initial analysis. The low mutation rate
that was observed is consistent with other reports
[12,14,51,52]. No mixed infections were observed; however, a
weakness of the study is that detection of mixed infections is
hampered by the necessity to subculture isolates prior to
extracting DNA for sequencing which may have altered the
bacterial population [53]. In addition to SNPs, indels and large
deletions were informative allowing us to differentiate patient
isolates to a degree not previously accomplished. Using this
approach we demonstrated that the majority of isolates from
the cohort tested were not identical, ruling out direct
transmission of MDR-TB between patients in these cases.
However two patients were found to have acquired MDR-TB
strains and isolates in three clusters (8 patients) were found to
have highly similar genomes, suggesting that their disease was
the result of transmission of MDR-TB. It should be noted that
the isolates examined represented just 69% of patients
diagnosed with MDR-TB and additional evidence transmission
may have not been recorded due to sampling limitations. In
some clusters distinct polymorphisms predictive of resistance
were observed, suggesting resistance had emerged
independently in these patients, all of whom were treatment
experienced. That accumulation of polymorphisms in isolates
from these patients was predominantly in genes related to drug
function is not surprising and it would be expected that
mutation rates would be influenced by the treatment
experienced by individual patients.
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The genomic evidence of transmission of MDR-TB is
supported by weaker circumstantial evidence of patient
interaction and how, or when, transmission may have occurred
is not apparent. The chronic nature the disease which may take
months or years to emerge and the long delay in accessing
care reported by some patients makes transmission events
difficult to ascertain by traditional epidemiology. Opportunities
for transmission were enhanced because patients with MDR-
TB are likely to have remained infectious during treatment with
ineffective standard therapies.

We have also demonstrated genome sequencing as an
efficient means of identifying putative markers of resistance.
However, assignation of such markers will require validation
using data from a larger collection of samples, including strains
found susceptible to the drug by phenotypic testing methods.
There are considerable challenges to overcome regarding the
validation of such markers. As demonstrated in this study, and
reported elsewhere, phenotypic methods of assessing drug
susceptibility where the bacteria are grown in the presence of
the drug may disagree with the presence or absence of
polymorphisms at loci associated with resistance [54-57].
There is also a lack of knowledge regarding the clinical
significance of SNPs as predictors of treatment effectiveness
and studies to validate genomic markers require both high
quality microbiological and clinical support [58].

The deletion of etaA reported to be required for activation of
ethionamide [46] has not previously been reported and further
work is required intreprete this finding as phenotypic test
results available for 3 of the 5 isolates concerned suggest they
were susceptible to the drug. The high density of SNPs in pncA
and gid genes might appear surprising compared to the overall
stability of the genome. PncA encodes pyrazinamidase which
is involved in the conversion of nicotinamide to nicotinic acid. It
also hydrolyzes pyrazinamide to its active form pyrazinoic acid
and numerous polymorphisms in this gene have been
associated with resistance [59]. All patients had been exposed
to this drug during treatment for previous episodes of TB. SNPs
in gid have been reported to confer low-level streptomycin
resistance in bacteria. In Mtb they have been observed to
occur with high frequency, when they are associated with the
emergence of high level resistance to streptomycin [60]. All
patients in this study were exposed to this drug as part of their
retreatment regimen, a strategy which has been shown to be
unsatisfactory for patients with MDR-TB in this setting [5].

In conclusion we have demonstrated the utility of whole
genome sequence analysis for investigating M. tuberculosis
isolated from treatment exposed TB patients. That two patients
acquired MDR strains during or following treatment for drug
susceptible disease and a total of eight patients shared almost
identical Mtb strains to those from one or more other patients,
demonstrates that transmission may be an important source of
MDR-TB in previously treated patients. Our data emphasises
the importance of infection control to prevent transmission of
drug resistant disease among patients receiving treatment,
particularly in those settings where access to effective second
line treatment remains limited. Early detection of MDR is more
crucial than previously recognised in this setting and
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Table 5. Drug susceptibility of isolates ordered by genome population.

Sample Spoligotype family SIT no. 1st line drug susceptibility SIREP 2nd line drug susceptibility OCKPE
A70196 EA15 126 SRRSS SSSSR
A70763_1 X1 302 RRSSS -
A70763_2 X1 302 RRRSS -
A70086 X1 2356 RRRRR -SSSS
A70458 X1 2356 RRRRR SSSSS
A70620 T 451 SRRRR RSSSS
A70416 T 228 SRRSS SSSSS
A70555 LAM9 42 SRRRS SSSSS
A70547 LAM11_ZWE 59 RRRRR -
A70441 LAM11_ZWE 59 RRRSS SSSSS
A70659 LAM11_ZWE 59 SRRRR SSSSS
A70582 LAM11_ZWE 59 SRRSS SSSSS
A70011_3 (0} - -

A70011_4 (e} - -

A70011_1 (0} - SSSSs -SSSS
A70011_2 o - -

A70170 LAM11_ZWE 1549 RRRRR SSSSS
A70012 LAM11_ZWE 1549 SRRRS S----
A70260 - 4 RRRRR SSSSS
A70785 LAM3 125 RRRRR SSSSS
A70011_5 - 4 RRRRR SSSSS
A70011_6 - 4 RRRRR -
A70596 T2 420 RRRRS SSSSS
A70757 T2 52 RRRRR S—--
A70067_2 T2 2867 SRRRR SSSSS
A70088 T2 52 SRRRR S----
A70329 T2 52 RRRRS SSSSR
A70376 T2 52 RRRRR S----
A70730 T2 52 SRRRR SSSSS
A70387 T2 52 SRRRS SSSSS
A70762 (0] - RRRRS S-—-
A70448 (e} - RRRRS SSSSS
A70250 T1 53 SRRSR SSSSS
A70645 T1 53 RRRRR SSSSS
A70661 T1 58] RRRRR SSSSS
A70480 T 53 RRRSS SSSSS
A70657 BEIJING 1 RRRRR SSSSS
A70655 CAS1_DELHI 356 SRRRS SSSSS
A70490 CAS1_DELHI 26 SRRRS S----
A70451 CAS1_DELHI 26 RRRRS S----
A70501 CAS1_DELHI 26 RRRRR RSSSS
A70136_3 CAS1_DELHI 26 SRRRS SSSSS
A70136_1 CAS1_DELHI 26 SSSSS -
A70136_2 CAS1_DELHI 26 SRSRS S----
A70280 CAS1_KILI 21 SRRRS SSSSS
A70428 CAS1_KILI 21 RRRRS SSSSS
A70067_1 CAS2 288 SSSSS -
A70769 CAS2 288 RRRSS SSSSS
A70780 CAS2 288 SRRRS SSSSS
A70144_1 CAS2 288 SRRRS SSSSS
A70144_2 CAS2 288 SRRRR S----

First line drugs S: streptomycin; I: isoniazid; R: rifampicin; E: ethambutol; P: pyrazinamide
Second line drugs O: Ofloxacin; C: Capreomycin; K: Kanamycin; P: PAS (Para-Aminosalicylate Sodium); E: ethionamide
doi: 10.1371/journal.pone.0083012.t005
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consideration should be given to implementing rapid tests for
drug resistance as part of treatment monitoring.
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